CCNA (Cisco Certified Network Associates)

CCNA  (Cisco Certified Network Associates)  

Working in Cisco is really a pleasure because it is one of the Leading networking companies in the world.  Most of the people working in Cisco are CCNA certified network engineers, that is the basic qualification to enter Cisco.

Cisco Certified Network Associate 

Exam Number CCNA Exam v1.0 (CCNA 200-301)
Associated Certifications  Implementing and Administering Cisco Solutions (CCNA)
Duration 120-Minutes
Available Languages English, Japanese
Register Pearson VUE

The CCNA (Cisco Certified Network Associate) is one of the most well known entry-level certifications within the IT industry; holding this credential proves your ability to install, configure, manage and support small to medium sized networks. At present, there’s a large demand for network engineers, but most of these positions require some sort of hands-on experience. 

 CCNA Candidate Job Roles

Job  
Network Engineer  
Network Technician  
Network Administrator  
Information Technology (IT) Support  
Systems Administrator  
Systems Engineer (Computer Networking/IT)  

IT Administrator

 

 

CCNA BATCH DETAILS

Options Regular FAST TRACK Weekend(Sat & Sun)
Course Duration  60-90 Days  15 Days 8 - 12 Weekends

New Scheduled Batches 

Month First Batch Second Batch Third Batch Fourth Batch
September 13th September 2021 22nd September 2021 27th September 2021 30th September 2021
October 4th October 2021 9th October 2021 13th October 2021

New CCNA (200-301) V1.0

 Implementing and Administering Cisco Solutions (CCNA)

1.0 Network Fundamentals

1.1 Explain the role and function of network components
  • 1.1.a Routers
  • 1.1.b L2 and L3 switches
  • 1.1.c Next-generation firewalls and IPS
  • 1.1.d Access points
  • 1.1.e Controllers
  • 1.1.f Endpoints
  • 1.1.g Servers
1.2 Describe characteristics of network topology architectures
  • 1.2.a 2 tier
  • 1.2.b 3 tier
  • 1.2.c Spine-leaf
  • 1.2.d WAN
  • 1.2.e Small office/home office (SOHO)
  • 1.2.f On-premises and cloud
1.3 Compare physical interface and cabling types
  • 1.3.a Single-mode fiber, multimode fiber, copper
  • 1.3.b Connections (Ethernet shared media and point-to-point)
  • 1.3.c Concepts of PoE
1.4 Identify interface and cable issues (collisions, errors, mismatch duplex, and/or speed)
1.5 Compare TCP to UDP
1.6 Configure and verify IPv4 addressing and subnetting
1.7 Describe the need for private IPv4 addressing
1.8 Configure and verify IPv6 addressing and prefix
1.9 Compare IPv6 address types
  • 1.9.a Global unicast
  • 1.9.b Unique local
  • 1.9.c Link local
  • 1.9.d Anycast
  • 1.9.e Multicast
  • 1.9.f Modified EUI 64
1.10 Verify IP parameters for Client OS
1.11 Describe wireless principles
  • 1.11.a Nonoverlapping Wi-Fi channels
  • 1.11.b SSID
  • 1.11.c RF
  • 1.11.d Encryption
1.12 Explain virtualization fundamentals (virtual machines)
1.13 Describe switching concepts
  • 1.13.a MAC learning and aging
  • 1.13.b Frame switching
  • 1.13.c Frame flooding
  • 1.13.d MAC address table

2.0 Network Access

2.1 Configure and verify VLANs (normal range) spanning multiple switches
  • 2.1.a Access ports (data and voice)
  • 2.1.b Default VLAN
  • 2.1.c Connectivity
2.2 Configure and verify interswitch connectivity
  • 2.2.a Trunk ports
  • 2.2.b 802.1Q
  • 2.2.c Native VLAN
2.3 Configure and verify Layer 2 discovery protocols (Cisco Discovery Protocol and LLDP)
2.4 Configure and verify (Layer 2/Layer 3) EtherChannel (LACP)
2.5 Describe the need for and basic operations of Rapid PVST+ Spanning Tree Protocol and identify basic operations
  • 2.5.a Root port, root bridge (primary/secondary), and other port names
  • 2.5.b Port states (forwarding/blocking)
  • 2.5.c PortFast benefits
2.6 Compare Cisco Wireless Architectures and AP modes
2.7 Describe physical infrastructure connections of WLAN components (AP,WLC, access/trunk ports, and LAG)
2.8 Describe AP and WLC management access connections (Telnet, SSH, HTTP,HTTPS, console, and TACACS+/RADIUS)
2.9 Configure the components of a wireless LAN access for client connectivity using GUI only such as WLAN creation, security settings, QoS profiles, and advanced WLAN settings

3.0 IP Connectivity

3.1 Interpret the components of routing table
  • 3.1.a Routing protocol code
  • 3.1.b Prefix
  • 3.1.c Network mask
  • 3.1.d Next hop
  • 3.1.e Administrative distance
  • 3.1.f Metric
  • 3.1.g Gateway of last resort
3.2 Determine how a router makes a forwarding decision by default
  • 3.2.a Longest match
  • 3.2.b Administrative distance
  • 3.2.c Routing protocol metric
3.3 Configure and verify IPv4 and IPv6 static routing
  • 3.3.a Default route
  • 3.3.b Network route
  • 3.3.c Host route
  • 3.3.d Floating static
3.4 Configure and verify single area OSPFv2
  • 3.4.a Neighbor adjacencies
  • 3.4.b Point-to-point
  • 3.4.c Broadcast (DR/BDR selection)
  • 3.4.d Router ID
3.5 Describe the purpose of first hop redundancy protocol

4.0 IP Services

4.1 Configure and verify inside source NAT using static and pools
4.2 Configure and verify NTP operating in a client and server mode
4.3 Explain the role of DHCP and DNS within the network
4.4 Explain the function of SNMP in network operations
4.5 Describe the use of syslog features including facilities and levels
4.6 Configure and verify DHCP client and relay
4.7 Explain the forwarding per-hop behavior (PHB) for QoS such as classification, marking, queuing, congestion, policing, shaping
4.8 Configure network devices for remote access using SSH
4.9 Describe the capabilities and function of TFTP/FTP in the network

5.0 Security Fundamentals

5.1 Define key security concepts (threats, vulnerabilities, exploits, and mitigation techniques)
5.2 Describe security program elements (user awareness, training, and physical access control)
5.3 Configure device access control using local passwords
5.4 Describe security password policies elements, such as management, complexity, and password alternatives (multifactor authentication, certificates, and biometrics)
5.5 Describe remote access and site-to-site VPNs
5.6 Configure and verify access control lists
5.7 Configure Layer 2 security features (DHCP snooping, dynamic ARP inspection, and port security)
5.8 Differentiate authentication, authorization, and accounting concepts
5.9 Describe wireless security protocols (WPA, WPA2, and WPA3)
5.10 Configure WLAN using WPA2 PSK using the GUI

6.0 Automation and Programmability

6.1 Explain how automation impacts network management
6.2 Compare traditional networks with controller-based networking
6.3 Describe controller-based and software defined architectures (overlay, underlay, and fabric)
  • 6.3.a Separation of control plane and data plane
  • 6.3.b North-bound and south-bound APIs
6.4 Compare traditional campus device management with Cisco DNA Center enabled device management
6.5 Describe characteristics of REST-based APIs (CRUD, HTTP verbs, and data encoding)
6.6 Recognize the capabilities of configuration management mechanisms Puppet, Chef, and Ansible
6.7 Interpret JSON encoded data

Contact

CSOFT IT SOLUTIONS & TRAINING

Pendanathu Plaza , 2nd Floor,IDBI Bank, Near Head Post Office, Main Road-Pala,Kottayam, Kerala, Pin : 686575
Ph : +91 4822 200199, +91 4822 200 299, Mob : +91 9496804551, +91 9947889245

Email: csoftpala@gmail.com, Web: www.csoftitsolutions.com

C-SOFT COMPUTER EDUCATION & Tally Academy

2nd Floor, Ninarpally Bldg, Central Junction
Erattupetta - 686121, Kottayam District, Kerala
+91 4822- 277 341, +91 9544900199, +91 9496804551

Email: csoftetpa@gmail.com, Web: www.csofteducation.com